A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuronal Na+ channels.
نویسنده
چکیده
Phenytoin, carbamazepine, and lamotrigine are anticonvulsants frequently prescribed in seizure clinics. These drugs all show voltage-dependent inhibition of Na+ currents, which has been implicated as the major mechanism underlying the antiepileptic effect. In this study, I examine the inhibition of Na+ currents by mixtures of different anticonvulsants. Quantitative analysis of the shift of steady state inactivation curve in the presence of multiple drugs argues that one channel can be occupied by only one drug molecule. Moreover, the recovery from inhibition by a mixture of two drugs (a fast-unbinding drug plus a slow-unbinding drug) is faster, or at least not slower, than the recovery from inhibition by the slow-unbinding drug alone. Such kinetic characteristics further strengthen the argument that binding of one anticonvulsant to the Na+ channel precludes binding of the other. It also is found that these anticonvulsants are effective inhibitors of Na+ currents only when applied externally, not internally. Altogether these findings suggest that phenytoin, carbamazepine, and lamotrigine bind to a common receptor located on the extracellular side of the Na+ channel. Because these anticonvulsants all have much higher affinity to the inactivated state than to the resting state of the Na+ channel, the anticonvulsant receptor probably does not exist in the resting state. Thus, there may be correlative conformational changes for the making of the receptor on the extracellular side of the channel during the gating process.
منابع مشابه
Inhibition of Na(+) current by imipramine and related compounds: different binding kinetics as an inactivation stabilizer and as an open channel blocker.
Use-dependent block of Na(+) channels plays an important role in the action of many medications, including the anticonvulsants phenytoin, carbamazepine, and lamotrigine. These anticonvulsants all slowly yet selectively bind to a common receptor site in inactivated but not resting Na(+) channels, constituting the molecular basis of the use-dependent block. However, it remains unclear what channe...
متن کاملThe investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels.
We hypothesized that lacosamide modulates voltage-gated sodium channels (VGSCs) at clinical concentrations (32-100 muM). Lacosamide reduced spiking evoked in cultured rat cortical neurons by 30-s depolarizing ramps but not by 1-s ramps. Carbamazepine and phenytoin reduced spike-firing induced by both ramps. Lacosamide inhibited sustained repetitive firing during a 10-s burst but not within the ...
متن کاملBiophysical Properties and Pharmacological interaction with Carbamazepine, Phenytoin and Lamotrigine of Human Brain Sodium Channel α-subunits Expressed in HEK293 Cells
Voltage-gated Na channels are the therapeutic targets of the antiepileptic drugs (AEDs) carbamazepine (CBZ), phenytoin (DPH) and lamotrigine (LTG). Neuronal Na channels in the brain contain one out of four distinct α-subunits: NaV1.1, NaV1.2, NaV1.3 and NaV1.6. This study provides a systematic comparison of the biophysical properties of these four α-subunits and it characterizes the interaction...
متن کاملMolecular model of anticonvulsant drug binding to the voltage-gated sodium channel inner pore.
The tricyclic anticonvulsant drugs phenytoin, carbamazepine, and lamotrigine block neuronal voltage-gated Na(+) channels, and their binding sites to domain IV-S6 in the channel's inner pore overlap with those of local anesthetic drugs. These anticonvulsants are neutral, in contrast to the mostly positively charged local anesthetics, but their open/inactivated-state blocking affinities are simil...
متن کاملAn Inactivation Stabilizer of the Na+ Channel Acts as an Opportunistic Pore Blocker Modulated by External Na+
The Na+ channel is the primary target of anticonvulsants carbamazepine, phenytoin, and lamotrigine. These drugs modify Na+ channel gating as they have much higher binding affinity to the inactivated state than to the resting state of the channel. It has been proposed that these drugs bind to the Na+ channel pore with a common diphenyl structural motif. Diclofenac is a widely prescribed anti-inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 54 4 شماره
صفحات -
تاریخ انتشار 1998